FROM AN INDIVIDUAL-BASED MODEL TO PARTIAL DIFFERENTIAL EQUATIONS
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Mathematic nd Computational af rovide powerful tools in the study of problems in population biclogy an:
The sut ich hi i nical s
putat we
Advantages of 1bM
- & -More realistic assumptions than state variable models.
Individual-based Models (IbM) or “agent-based” models "ndividuals are described by attributes and capabilities: grow, develop, acquire resources, reproduce,
" g interact, changing in many ways over their life cycle and modifying their environment.
They are a bottom-up approach which starts with the ‘parts’ *The simulations provide information on the collective behaviour by looking at the behaviour of each element
(individuals) of a system and then tries to understand how of which it Is composed.
the system's properties emerge from the interaction T - 3
among these ‘parts’, j «They can address types of questions difficult to be addressed with classical models.
<Highly detalled models with a wide variety of components and mechanisms.
Four criteria that distinguish what we consider IbM «Controlled simulation experiments to achieve a comprehensive understanding of the key structures and
(1) The degree to which the complexity of the individual's life processes.
cycle Is reflected in the model
{2) The extent to which variability among individuals of the
same age, size or stage is considered
{3) Whether or not the spiﬂal and temporal dynamics of Disadvant: of 1o
used viduals are explicitly represented \ * i
{4) Whether real or integer number are used to represent the *The amount of detail is often too high to be supported in terms of what we can measure and parameterize.
size of a population (IbM are bullt using the mathematics of «Extensive simulations constitute a brute-force method still lacking an analytical or theoretical framework.
discrete events) =Mostly applied to pragmatic motivations rather than paradigmatic,
More plex than and lytically tractable many entifies, spatial scaes, heterogeneities
and stochastic events.
«Absence of a common and concise language for communicating.
_onsnn - ) _ ) _ o T
_—— Lagrangian, individual-based, descriptions make attractive cartoons and can provide a basis for population features analysis. "‘3
< Eulerian, partial differential equation based, field descriptions capture the essence of population dynamics. e
-""‘-—\______ = - st 2 ——
——— We are interested in bridging the gaps between both approaches. IR——=

ACTIONS OH [A: DIVIDUAL
INDISIM {INDlvldual DiScrete SIMulations), a model that

stands on #di d methodology to study micrabial [ oo waa ] . = -
systems. INDISIM-YEAST, an adaptation from INDISIM to
study yeast populations in batch cultures.

YEAST POPULATION MODEL
# The set of Aif) yeast cells conforms the population, dafined by
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Y, is a yeast cell with the ing e =
v, : cell biomass i e b i —
+v; : genealogical age as a number of bud scars on the cellular | e e — .
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«vy vy vs) : position in the spatial domain i ;_: !

- : the reproduction phase in the cellular cycle, namely the
unbudded or budding phase

v, “start mass”, i.e., mass requiered to change from unbudded to
budding phase

«v;- minimum bud biomass to complete budding reproduction

Wy 1 time required to plete the budding phase

Wyt sur\wal time without satisfying the metabolic requiraments

* The set of Q” spatial cubic cells configures the grid, defined by
G={S,[5: ) 5,00 221
&, is a spatial cell, being s, it} and 5, ) the number of glucose

and ethanal particles respectively, @
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| PARTIAL DIFFERENTIAL EQUATIONS for INDISIM-YEAST |
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v fy, ey a): density of cells in the unbudded phase
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The hn'dge_ be!waen the IBM and the PDEs is obtained by cclns'de!ing_a mcldalﬂzely interacting paltticle_ Future woilc
system which includes all the “parts” of the systemn; the number of particles is assumed to grow to infinity,
§ M Tt =0mom,,mypa) = py, (T) yielding a weak form of the PDE system. -r:;:opr::c;ln:omlon
2 . ) ) . 3 o system.
| P = 0;m, 1y, mp,a,a,) =0 The taking place {such as and motion) are dealt with by a set of Y
g o —3 stochastic differential equations. = Comparison of this
& £y (T, £ =0) = pgo (F) solution with the IbM
B P (Tt =0)=0 The paint processes which |nduce isconti anges in the population (such as cellular division, death realizations.
-E * and cell phase are Iy ch bed as y Poisson
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