La metodología de los modelos basados en el individuo (IBMs) permite tratar con el proceso discontinue. Este tipo de modelación ya se ha utilizado para el estudio de cultivos bacterianos, desarrollando el simulador INDISIM (Individual Discrete Simulations) [3] y de cultivos de levaduras mediante el simulador INDISIM-YEAST [4, 5].

El objetivo del trabajo es explorar las posibilidades del simulador INDISIM-YEAST para abordar el estudio en el impacto de las edades geniológicas de las células de levadura en los perfiles de la fermentación, así como estudiar las posibilidades de futuro en el diseño de una versión específica para el estudio del proceso que tiene lugar en la fermentación cerveza, que contemple la manipulación y reutilización de la levadura.

EL MODELO DE SIMULACIÓN INDISIM-YEAST

Los modelos de simulación pueden ser usados para capturar e imitar poblaciones microbianas, con el fin de poder entonces “experimentar” con ellas y, sobre ellas, “experimentar” con las sistemas virtuales generados. Los IBMs, en los que los individuos interactúan dinámicamente entre ellos como elementos estructurales del sistema modelado, ejemplifican este tipo de simulación.

EL CULTIVO MICROBIONO SIMULADO

El conjunto de N(t) células de levadura que forman la población se define por:

\[P(t) = (\gamma_1(t), \gamma_2(t), \ldots, \gamma_N(t)) \]

\[\gamma_i(t) \] es la edad \(i \) de características:

- \(\gamma_1 : \) biomasa celular
- \(\gamma_2 : \) edad geniológica (numeros de ciclos de la membrana)
- \(\gamma_3 : \) posición en el dominio espacial
- \(\gamma_4 : \) fase de reproducción en el ciclo celular
- \(\gamma_5 : \) fase de fermentación
- \(\gamma_6 : \) masa necesaria para pasar a la fase de fermentación
- \(\gamma_7 : \) biomasa mínima de la gema para completar la reproducción
- \(\gamma_8 : \) tiempo mínimo requerido para completar la fase de fermentación
- \(\gamma_9 : \) permanencia de supervivencia sin arrastrar las necesidades metabólicas

El dominio físico en el que está ubicado el conjunto de células de levadura se evoluciona de acuerdo a unas reglas de comportamiento individual, es formado por un conjunto de Q células cúbicas, definido por

\[G(t) = \{ (x_1, y_1, z_1), (x_2, y_2, z_2), \ldots, (x_Q, y_Q, z_Q) \} \]

\(S_n \) es un conjunto espacial con \(n \) células de glucosa y etanol, respectivamente.

RESULTADOS Y DISCUSION

En la página Web https://aneto.upc.es/ simulation, halla-patada se puede encontrar una versión base de INDISIM-YEAST que permite ejecutar simulaciones de fermentaciones y visualizar las representaciones gráficas de algunas de las variables controladas por el simulador [5].

Figura 1. Evolución del número de células vivas en las simulaciones de fermentaciones realizadas con INDISIM-YEAST, a) traves de la crecimiento inicial. b) Evolución completa. Edad geniológica de la célula inicial es 0 en Sm1, 3 en Sm2 y 7 en Sm3.

Figura 2. Evolución temporal del etanol producido por la población de levaduras en los simulados de fermentaciones realizados con INDISIM-YEAST. Edad geniológica de la célula inicial que origina la población es 0 en Sm1, 3 en Sm2 y 7 en Sm3.

La edad de la célula genera diferencias en el crecimiento e incrementa la supervivencia de la población y en la fase de fermentación del azúcar y de la producción de etanol.

Los resultados simulados obtenidos se corresponden con los de trabajos experimentales de Provall y coautores [1, 2].

TRABAJO FUTURO

ESTE ENFOQUE PODRÍA AYUDAR A ENTENDER EL PROCESO QUE TIEÑE LUGAR EN LA FERMENTACION Y APOYAR LOS PROCEDIMIENTOS EMPÍRICOS EN LA SELECCIÓN DE LEVADURAS A UTILIZAR DURANTE EL "SERIAL REPLICHING".

REFERENCIAS