Appendices

Appendix B: INDISIM-Saccha description
The model description follows the ODD (Overview, Design concepts, and Details) protocol for describing individual- and agent-based models (Grimm et al., 2006; 2010). To better follow this description, the reader should bear in mind the following: (i) individual and spatial cell state variables, which record the specific state of the system at each time step, are designated with a capital letter followed by a suffix; (ii) the model parameters are designated with a lower case letter; (iii) any particular random realizations following a given statistical distribution are designated with a lower case letter with a dieresis; and (iv) the modelled organic molecule are designated as CN with a suffix. Some of the important suffixes are: GLU (glucose), OH (ethanol), NH4 (ammonium), CO2 (carbon dioxide), and MIC (from a microorganism).

A.1 Purpose

The model has been developed to analyse the dynamics of S. cerevisiae anaerobic batch cultures evolving into a non-stirred liquid medium with glucose as a main C source and organic and inorganic N sources.
A.2 Entities, state variables, and scales


The model takes into account three entities: S. cerevisiae individual cells, spatial cells, and the environment. A yeast cell (Ii) is defined by the variables: X(t), Y(t), and Z(t), identifying its position in the domain; M(t), its structural mass (CNMIC-pmol); B(t), its genealogical age (bud scars); P(t), the reproduction phase in the cellular cycle in which the cell is currently (unbudded or budding phase); MStart(t), its “Start mass” (CNMIC-pmol), the mass required to change from the unbudded to the budding phase; Minc(t), the increased mass (CNMIC-pmol) since the cell entered to the budding phase; Tinc(t), time spent into the current reproduction phase (time steps); RGLU(t), the amount of C stored in the cell as reserve carbohydrates or in the model as a glucose polymers (glucose-pmol), RCN(t), the amount of organic N stored in the cell as a reserve (CN-pmol);[image: image2.png]Cétu(®)



, amount of non-metabolized glucose inside the cell (glucose-pmol); and, D(t) the mortality index to evaluate cell viability. Letting I=I(t) denote the number of individuals at time t, and identifying an individual by i, the population’s state at t is: 
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 (A.1)

The simulated space is a cube which is divided into spatial cells (SC) of equal size and shape (Sxyz) described by a vector defined by the variables: SGLU(t) the amount of glucose (pmol); SCN(t), the amount of organic N (pmol); SNH4(t), the amount of ammonium (pmol); SOH(t), the amount of ethanol (pmol); SCO2(t), the amount of carbon dioxide (pmol). The whole three dimensional grid is then described by:
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                     (A.2)

The environment simulates a liquid medium closed in a cube whose faces do not allow the ingress or egress of either organic or inorganic elements. However, to account for the required periodic boundary conditions, the spatial domain is wrapped, so organic and inorganic elements moving out of the spatial domain reappear on the opposite face of the relevant axis. Substrates within the medium are subject to diffusion phenomena. 

The temporal evolution of the system is divided into equal intervals associated with time steps (TS).
A.3 Process overview and scheduling

Global simulation scheduling is mainly made up of four sections: (i) the initialization of the simulated system, when the input data is entered, (ii) the setting of the initial configuration of the population, (iii) the initial setting of the space, and (iv) the time step loop which is repeated until the end of the defined time steps. The time step loop scheduling includes, chronologically: (iv.i) the random order of the individuals’ acting order, which will act one behind the other, (iv.ii) the individual actions loop (sections A.7.1-A.7.5), (iv.iii) the actions over the medium (section A.7.6), and (iv.iv) output of the desired aggregated and state variables.

At each time step and at the individual actions loop, existing yeast cells perform, sequentially, the following set of actions: motion (section A.7.1), uptake (section A.7.2), metabolism (section A.7.3), reproduction (section A.7.4), and lifespan (section A.7.5). Yeast activity is locally described; therefore actions of individuals take place and only affect the spatial cell they are in. Variables are updated as soon as their value is calculated by a process (asynchronous updating). 

A.4. Design concepts

Emergence. The main phenomena to emerge from the model are the evolution of the nutrient concentrations over time, the population growth behaviour, and the distribution of individual properties at particular times through the system evolution, emphasizing mass and scar distributions as a direct simulation homologous to well-established experimental techniques. The phenomena described above are not imposed by model rules but are consequences of individual behaviour and interactions between biotic and abiotic elements. 

Adaptation. The model assumes that the individual yeast changes its metabolism as an adaptation strategy to the glucose depletion. The individual begins to store carbohydrates as C reserve that will be required to survive during starvation conditions (Walker, 1998). 
Sensing. Individual yeasts are assumed to sense medium glucose concentration and change their internal metabolic fluxes to adapt to the changing environmental conditions. This sensing mechanism is not explicitly modelled but individuals are simply assumed to know external glucose.

Interaction. Both intraspecific direct and indirect interaction phenomena are taking place within the modelled system. Indirect interactions include competition for nutrient sources (glucose, organic N and ammonium). Detrimental effects into individual fitness due to external ethanol content, which is a main product of the individual yeast metabolism, can be seen as a direct interaction among yeast individuals. 

Stochasticity. Stochasticity is introduced into the model when setting some parameter values of the individuals using a positive truncated normal distribution. Randomness is also considered when the rules are applied to individuals and to spatial cells by using probabilistic distributions to deal with or manage individual events. Random processes or events include: (i) movement of individuals; (ii) maximum uptake rate at a given time interval; (iii) computation of the toxic effect of the ethanol on the glucose uptake; (iv) computation of maintenance energy requirements; (v) yeast start mass assignation; (vi) checking successful completion of budded phase (both within expended time and accumulated cell mass); and (vii) checking for cell death. The sequence of action of individuals changes randomly at each time step in order to avoid privileging first-acting cells. 
Observation. The behaviour of the system is followed by means of (i) data related to the global properties of the system and (ii) data concerning properties of individual yeast cells. The former may include, but are not limited to, information about the temporal evolution of the amount of nutrients (glucose, organic N, and ammonium), the amount of metabolites (ethanol and carbon dioxide), the average nutrient consumption, the number of viable yeast cells, the number of dead yeast cells, viable yeast biomass, dead yeast biomass, heat dissipation of the system, maintenance energy expended by the yeast population (defined as the number of metabolized nutrient particles not used in the production of new biomass), and the mean mass of the cell population. In addition, it is feasible to obtain the evolution of microscopic population parameters, which are controlled at individual level, such as, among other potential individual properties, the distributions of genealogical age and of the mass of the individuals. These distributions are related mainly to the cellular cycles of budding reproduction, and reflect the state of the yeast population at given times in the fermentation process. Because the simulator saves information about every cell at each time step, this recorded information makes it possible to construct bar charts and histograms to represent the latter distributions. These simulation outputs show the time evolution of the structure of the population throughout the yeast culture. The preceding separation of output simulation results mirrors the classification of experimental techniques used to study said properties.

A.5 Initialization

Following the same methodology as Gras and co-workers (Ginovart et al., 2005; Gras et al., 2011), individual yeast mass is expressed in molar units, so that each mass pmol is composed by ayC pmols of C and 1 pmol of N. Additionally, to make the simulator easy for unskilled users to operate, the application of experimental units into the inputter section is desirable and, consequently, they have to be converted to simulation units (molar).

The initial number of individuals of a given simulation, I(t=0), is calculated according to a provided initial cell density (individuals/ml) and the simulation volume. Then, n0 individuals are taken at random from a text file, saved from a previous simulation (inoculum bank), keeping individual variable values except for their position (X,Y,Z), which is taken randomly and equiprobably within the spatial domain, and its carbohydrates reserves (RGLU), which is assumed to be 0. This initialization of the individual’s state allows the influence of the initial (and uncertain) values under the system evolution to be reduced. Initialization of the individuals in the simulation used as inoculum source is summarized in Table A.1.
Table A.1. Initialization of individual state variables at the beginning of the simulation used as inoculum. Within the table, a denotes the initial value, iq is the number of spatial cells per dimension and mC is the critical mass at reproduction model parameter, and (mc its standard deviation.

	Individual state variables
	Initial Value



	X
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	Y
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	M
	[image: image11.png]a=mc-U(081.2)





	B
	0

	P
	1

	MStart
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	Minc, Tinc, RGLU, RCN, [image: image14.png]Cétu
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Spatial cells state variables are initialized according to an initial concentration (g/l) which is equally distributed among all spatial cells. Substrate molar mass, simulated volume and the number of spatial cells allow changing from initial concentration to initial cell content (pmol per spatial cell). Organic labile N is assumed to have the following elemental formula: [image: image16.png]N



.

A.6 Input data

The model does not use input data to represent time-varying processes.

A.7 Submodels

A.7.1 Motion submodel 

Since a discrete space is modelled, the position of the cells is defined by three integer coordinates. It is assumed that the position of a yeast cell may change to a new position in the space. The yeast cell position after the movement is randomly chosen among the current spatial cell of coordinates (x0,y0,z0) and a 3D Moore neighbourhood,[image: image18.png]o Yo%



, as defined by Zhang et al. (2009):
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                                (A.3)

where (x,y,z) represents the coordinates of the neighbourhood spatial cells of the cell of coordinates (x0,y0,z0). We are using periodic boundary conditions.
A.7.2 Uptake submodel

Yeast translocate low molecular weight compounds dissolved in water through the cell membrane, which represent the fundamental way in which they communicate and interact with their surrounding environment (Walker, 1998). From the various sugars that can be used by S. cerevisiae, glucose plays a distinguished role in respirative and fermentative metabolism and is widely used in laboratory experiments. Additionally, glucose exhibits a repressive and inhibitory effect on the assimilation of other sugars. When it comes to N sources, S. cerevisiae is capable of transporting and using a few inorganic (ammonium ions and urea) and several organic N, mainly amino acids and some peptides (di o tri peptides), with specific transport mechanisms. Ammonium salts are routinely incorporated into yeast growth media because all yeasts are able to use ammonia efficiently. In brewing fermentations mixtures of amino acids provide the bulk of the yeasts’ N supply. Peptides are available in industrial media through proteolysis of plant protein (hordein from barley in brewing) and through the addition of peptones in laboratory media.

Three substrates are taken into account by the model: glucose, organic N and ammonium (j=GLU, CN, NH4). As previous INDISIM models (Ginovart et al., 2005; Gras et al., 2011), it is assumed that the maximum individual uptake of C and N sources is controlled by the internal C to N ratio (Eq. A.4), a value lower than or equal to rC to uptake C sources and greater than or equal to rN to uptake N sources. 
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                                                  (A.4) 

where aC is the C to N molar ratio of the simulated organic labile compound (CN).
The maximum individual uptake, [image: image24.png]U ax (),



 in a time step for the substrate j (pmol), will be determined by the size of the individual (i.e. its structural mass). As scar tissue is thought to be less efficient than normal cell wall material at facilitating the transport of macromolecules into the cell (Powell et al., 2003a), it has been previously proposed that an increase in the bud scars number can limit the surface area for nutrient exchange (Mortimer and Johnston, 1959). Interestingly, as shown by Powell et al. (2003a), bud scars (as birth scar) expand with genealogical age and, as a result, the percentage of cell surface occupied by a scar is almost constant throughout the genealogical lifespan of the cell, making the effects of the number of scars of the cell, B(t), constant (Eqs. A.5 .and A.6). It is worth noting that this may not be true if the individual’s mass, and not its surface area, is being considered in its own right. Assuming a characteristic cell shape and density, the relationship between the cell surface area, cell volume, and cell mass, which is usually used to obtain experimentally the unitary uptake rate, can be approached (see, for instance, Ginovart et al., 2005; Gras et al., 2010, 2011). Keeping in mind the high level of uncertainty of the necessary estimates (which makes this computation highly uncertain), this unit transformation has been avoided. Nonetheless, a constant effect of the number of scars on the uptake has been taken into account. Additionally, in the case of glucose (Eq. A.6), the model assumes that the maximum uptake is also affected by the extracellular ethanol content of the spatial cell the yeast is currently in. This toxic effect of the ethanol has already been taken into account in previous modelling efforts (Steinmeyer and Shuler, 1989; Sainz et al., 2003). 
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                                    (A.5)
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where [image: image30.png]


 is the specific substrate j uptake rate (pmol/pmol CNMIC/TS), ps is a penalization per cell scar and [image: image32.png]


 is the tolerance to ethanol of the yeast (pmol Ethanol/SC). [image: image34.png]


 is a non-negative random draw from a normal distribution with mean uj and standard deviation σuj. [image: image36.png]


is a non-negative random draw from a normal distribution with mean puOH and standard deviation σpuOH. Negative numbers for [image: image38.png]Uy ax ()



 are not allowed and the value of zero is used instead. 
The substrate uptake is also influenced by the amount of available substrate, that is the amount of substrate j present in the spatial cell,[image: image40.png]5;(0),



 in which the yeast is evolving. The substrate j uptake (pmol) at a given time step, [image: image42.png]U;(t)



, is then the minimum quantity between the [image: image44.png]Uy ax ()
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A.7.3 Metabolism submodel

For clarity, the metabolism submodel is divided into these sections: (i) variables update, (ii) maintenance requirements, (iii) carbon reserves creation section, (iv) new mass synthesis, and (v) substance release. 

(i) Variables update. The internal amount of glucose able to be metabolized is given by its glucose uptake in a time step and the amount of non-metabolized glucose remaining from the previous time step, therefore, the glucose uptake is modified as follows: [image: image48.png]Ugry () = Ugy(t) + Ci1y (t — 1)



. Similarly, organic N uptake is also recalculated to take into account cell’s internal reserves: UCN(t)= UCN(t)+ RCN(t-1). 

(ii) Maintenance requirements. The model assumes the fermentative catabolic pathway (glycolysis and alcoholic fermentation) of S. cerevisiae as the first option to achieve metabolic energy. The following widely-accepted (Madigan, 2006) coupled global reaction (Eq. A.7) allows us to establish the metabolism model:
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                                           (A.7)

A yeast cell requires energy for its cellular maintenance, and it is assumed that this energy is proportional to its structural mass, M(t). Additionally, the ethanol accumulated during the fermentation is a potent chemical stress factor for yeast cells so various physiological adaptations, which are thought to protect it against ethanol, occur in the cell (Walker, 1998), and measured maintenance requirements are known to be increased (Yang et al., 2012). Hence, if e is the maintenance rate through fermentative metabolism (pmol glucose/pmol of CNMIC/TS) that a cell needs to remain viable for the current time step, we assume that the total energy required to maintain viability by fermenting glucose, Ma(t), is given by Eq. A.8:
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                                          (A.8)

where [image: image54.png]


 is a penalization due to local ethanol content (pmol of glucose/pmol of CNMIC/(pmol of ethanol/SC)). [image: image56.png]Bou



 is a non-negative random draw from a normal distribution with mean pOH and standard deviation σpOH. The model assumes that maintenance energy must be covered first before a cell is able to experience growth, i.e. new mass synthesis.
Taking Eq. A.8 into account, if UGLU(t)≥Ma(t), so the cell has enough glucose to cover Ma, it remains viable, and UGLU(t) is updated by subtracting Ma. The remaining UGLU(t) will then be used to create C reserves or new mass (see below). But if UGLU(t)<Ma(t), then the cell does not have enough glucose to cover Ma and it needs to use its C reserves, RGLU(t). In that situation, if UGLU(t)+ RGLU (t)≥Ma(t), then the cell has enough glucose to cover Ma and remains viable, but without being capable of creating new mass; however, if UGLU(t)+ RGLU(t)<Ma, it is not able to fulfil Ma, and may die (see section A.7.5 lifespan submodel below). Individuals that have completed their maintenance and still have glucose inside the cell are able to use it in the creation of new mass or new C reserves.
(iii) Carbon reserve creation. Resting and stressed cells accumulate high concentrations of storage carbohydrates. The main storage carbohydrate in yeast cells are trehalose and glycogen (Panek, 1991). Glycogen degradation and synthesis are controlled by environmental factors (e.g. Rowen et al., 1992). Once exogenous sugars and other essential nutrients become limiting, yeast can accumulate glycogen when their cell cycle is arrested. Using the stored glycogen under starvation conditions by endogenous fermentation contributes to cellular maintenance by providing ATP to keep cell viability (Walker, 1998). During the initial stages of fermentation of brewer’s wort, S. cerevisiae rapidly degrades stored glycogen. To model this behaviour, it is assumed that reserve carbohydrates are created, and thus RGLU(t+1)=UGLU(t), when glucose content in the spatial cell is below a threshold (lS). Otherwise, new mass can be synthesized.
(iv) New mass synthesis. In order to synthesize new mass, S. cerevisiae needs a C source, an N source and a certain amount of energy. Yeast anabolic reactions (energy-consuming, reductive process) have to be coupled to catabolic reactions (energy-giving, oxidative process), which is achieved by dehydrogenase enzymes which predominantly use NADP and NAD, respectively, as redox cofactors (Walker, 1998). Combing stated catabolic (Eq. A.7) with the anabolic needs of C, N, and energy, Eq. A.9 and A.10 can be obtained. Notice that, in addition to its energetic role, glucose is the only C source to fulfil the anabolic part of the coupled reaction A.9. In contrast, since organic N is simultaneously a C and N source, both glucose and organic N are providing the needed anabolic C within Eq. A.10. 
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        (A.10)

where CGLU are C moles from glucose, CCN are C moles from the modelled organic N, NNH4 are N moles from ammonium, NCN are N moles from the modelled organic N, [image: image70.png]


 is a mole of yeast biomass, COH are C moles from the ethanol, CCO2 are C moles from the carbon dioxide, α1 and α2 indicate the C moles from glucose needed to synthetize a mass unit (mol C-glucose/mol CNMIC); and E1 and E2 are metabolic energy required to create a mass unit (mol ATP). Taking into account that energy is usually stored inside microorganisms as macromolecules so the amount of ATP remains low (Madigan, 2006), Eqs. A.9 and A.10 assume that the addition of metabolic energy from anabolic and catabolic subreactions becomes zero. 

Knowing the remaining amounts of C inside the cell, UGLU(t); organic N, UCN(t) and ammonium UNH4(t), the C and N composition of the substrates and the stoichiometry of the global reactions (Eqs. A.9 and A.10), the moles of new mass, (m, will be defined by the minimum value found multiplying the amount of reactants by the C (or N) moles of the substrate divided by the corresponding stoichiometric coefficient. Finally, the submodel assumes that a cell will synthesize new mass consecutively following Eqs. A.9 and A.10. Once the newly created mass is known, the individual mass is set to: M(t) =M(t-1)+(m. Similarly, if the individual is budding, the increased mass since the beginning of the budding phase, Minc, is also updated Minc(t) = Minc (t-1)+(m. If N sources limit the mass synthesis, and thus some glucose still remains inside the cell, it is stored in the corresponding individual state variable. Therefore, [image: image72.png]Céty(t) = Ugy (8)



.
(v) Substance release. As a consequence of mass creation, the amount of fermented glucose is also known. From this, metabolic heat and products are released to the spatial cell. The non-used ammonium is released to the medium but, taking into account that yeast cells store large pools of endogenous amino acids (Eddy, 1980; Steinmeyer and Shuler, 1989), the model considers that remaining organic N is stored as internal N reserves, RCN. Therefore, RCN(t)= UCN(t).

A.7.4 Reproduction submodel

The model assumes that a cell can start a new cell cycle only after the preceding cycle is completed, and that the cellular cycle involves two differentiated phases. Phase 1, or unbudded phase (P(t)=1), covers most of phase G1 and a very small fraction of phase S in the traditional division of the cell cycle; while phase 2, or budding phase (P(t)=2), covers a small fraction of G1, most of S and all of G2 and M (see Ginovart and Cañadas, 2008; Prats et al., 2010; Ginovart et al. 2011a;b, and references therein).

Conceptually, the model assumes that in the unbudded phase the yeast cell is getting ready for budding and that change to the budding phase takes place only when the cell: (i) has attained a minimum cellular mass, defined by the parameter mC, the critical or minimum mass; and (ii) has achieved a minimum growth of its mass, which is related to the model parameter ΔmB1. Note that within the model, Phase 1 does not need to be completed in a given time interval. In practice, this behaviour is achieved by comparing, every time step, if the cell mass M(t), has attained its needed mass at “Start”, MStart(t), which is set at the beginning of Phase 1 so it fulfils the stated conceptual assumptions (see computation of MStart below). Therefore, if, at a given time step, M(t)≥MStart(t), the cell enters the budding phase. Note that this check in the model is to see whether an individual cell has reached a “Start” mass, irrespective of its original value and growth rate. 

The budding phase is the least flexible in the cellular cycle as it requires both temporal and growth checks. Within the model, two conditions must be satisfied for the releasing of the bud, and the subsequent change to the unbudded phase. These are: (i) a minimum growth of mass, which is related to the parameter ΔmB2; and (ii) a minimum time interval, which is related to the parameter Δt2. The first requirement is met when [image: image74.png]M, = Amg,
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 (TS) are non-negative random draws following, respectively, N(ΔmB2, σB2) and N(Δt2, σt2). The first condition is necessary because a yeast cell must have a minimum number of molecules and achieve minimum structural mass in order to function as an independent entity. On the other hand, the bud growth, even under optimal growth conditions, needs a minimum time interval to be completed; this is represented by the second condition.

The budding phase is completed with the cell division. The mass of the mother cell after the cell division, M(t+1), is equal to the actual mass less the daughter mass (mD) as follows: M(t+1)=M(t)-mD. As previously assumed in other modelling efforts (Porro et al., 2009), once the cell passes “Start”, all the newly synthesized mass goes to the daughter cell, which has been experimentally corroborated (Alberghina et al., 1998 and references therein). Thus, mD=Minc(t), represents the accumulated mass since the start of the budding phase until t.

Once mD and M(t+1) are known, and since both mother and daughter cells start a new unbudded phase, their mass at “Start”, MStart(t+1), have to be computed. Taking the mother cell as an example, If [image: image82.png]M(t+1) <mg—Amg,



 then the “Start” mass assigned to the cell is MStart(t+1)=[image: image84.png]


; otherwise, if [image: image86.png]M(t+1) > m;—Amg,



 then the “Start” mass assigned to the cell is [image: image88.png]Mo (t+ 1) = M(t + 1) + Amy,



where [image: image90.png]


 and [image: image92.png]


 are positive random draws following, respectively, N(mC, σmC) and N(ΔmB1, σmC). The calculus for the daughter cell is analogous. Notice that using this method, the previously stated conceptual assumptions of the requirements of the unbudded phase are met. 
Properties of the, until now, mother cell are shared with the new daughter cell as a result of the bud detachment. The model assumes that this distribution of properties is proportional to the fraction of the detached mass. Therefore, and as previously stated, the fraction of the detached mass can be obtained from the relation:
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Using the previous expression and knowing RGLU(t), RCN(t) and [image: image95.png]Cétu()



 for the mother cell, RGLU(t+1), RCN(t+1) and [image: image97.png]Céy(t+1)



 for both the mother and the daughter cell can be easily computed.

The daughter cell (a virgin cell since its number of bud scars is 0) is born in the same spatial cell occupied by the mother. Moreover, since the previous history of the mother cell is affecting both the cell and the bud, D(t+1), the time without covering maintenance requirements of the daughter cell is also inherited from the main cell at detachment. The daughter cell remains active since the reproduction process has finished but it does not act until the next time step is reached.

A.7.5 Lifespan submodel

According to Maskell et al. (2003), it is essential to define the chronological lifespan as a consequence of cumulative and irreversible damage to intracellular components during extended stationary phase, which compromises cell integrity and leads to death and autolysis. In contrast, replicative lifespan is related to the number of divisions that an individual cell undertakes before entering a non-replicative state termed senescence, which leads to cell death and autolysis (Maskell et al., 2003; Jenkins et al., 2003 and references therein). 

Both chronological and replicative lifespan are taken into account within the model. Chronological lifespan is followed using a mortality index, D(t), which satisfies the following rules: (i) whenever a cell is not able to satisfy its maintenance requirements in a time step, the simulator increases the mortality index of the cell by one: D(t+1)= D(t)+1; conversely, (ii) the index is set to 0, D(t+1)=0. Chronological lifespan is evaluated at every time step by comparing D(t) and [image: image99.png]


 (TS), a non-negative random draw from an N(td, σtd). Here, td denotes an average time beyond which the cell cannot survive. Thus, if D(t)>td, the cell dies. In the model the individual cells may die, indirectly, due to ethanol excess or low glucose concentration. These reduce the ability of the yeast to cover its maintenance energy and increase mass. The magnitude of these unfavourable conditions will determine the vitality and viability of the individual yeast cell. Replicative lifespan is followed using the cell’s chronological age (i.e. the number of cell scars), B(t). Once a cell reaches the maximum number of scars it can experience, known as the Hayflick limit (Hayflick, 1968; Jenkins et al. 2003, and references therein), hl, the yeast cell dies. When the cell dies, its mass remains in the medium and no turnover is modelled.
A.7.6 Actions over the medium

Substrates are subject to diffusion processes through the three-dimensional lattice of spatial cells according to Fick’s Law (Bormann et al., 2001). The model accounts for mass transfer among cells situated into a 3D Moore neighbourhood (Eqs. A.12-A.15). Given a spatial cell of coordinates (x,y,z),[image: image101.png]xyz



, containing, at time t, a specific amount of substrate j, designated here as [image: image103.png]5,75 ()



; and accounting for the amount of diffused substrate from (into) the neighbourhood cells, the amount of substrate j within the cell after diffusive processes, [image: image105.png]S, (E+ 1)



, can be obtained by:
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where dj accounts for the fraction of substrate j diffused from (into) the spatial cell [image: image109.png]vz



 to (from) any spatial cell with centres are at one spatial cell of distance, and:
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A.8 Implemented model verification

A variety of measures and techniques have been used in order to make sure the model was accurately implemented. As a general measure, the INDISIM-Saccha simulator, unlike previous INDISIMs, has been implemented using Fortran 90 code in order to take advantage of its new features (mainly, free-form source input, intrinsic array functions, dynamic memory allocation, etc.) which allow for a source code simplification, thus, making the code less error prone. Although newer language specifications exist, Fortran 90 is a qualitative leap from previous versions but it nevertheless allows compatibility with existing code. It is also worth noting that, aiming to avoid otherwise potentially hard to find errors, implicit variables declaration has been avoided by using the Implicit None declaration in all the program units. 

Internal model logics and behaviour were systematically investigated by collecting both global and individual data through the simulation length and visually testing them within a spreadsheet program. In particular, global variables include: (i) yeast growth curve; (ii) accumulated death individuals curve; (iii) substrates (glucose, organic N and NH4) uptake curves; (iv) main metabolites production curves (released ethanol and CO2); and (v) substrate effective uptake (defined as uptaken substrate divided by structural mass of the population at the beginning of the time step). Individual data were investigated by way of histogram and included: (i) structural mass distribution; and (ii) genealogical age distribution. It is worth pointing out the dual purpose of this practice which facilitates understanding of the model (or modelled system) and of the consequences of the modelling decisions undertaken.

Because it is crucial to maintain mass balances of the chemical elements considered in this design, a central piece of the verification of INDISIM-Saccha is a C and N mass balance built internally into the simulator. Although not a guarantee of perfect implementation, it allows detection of otherwise hard to find errors. Specifically, the C and N contents within the system at any particular time step have been followed by means of the existing fraction (%) of the element regarding its initial amount at systems initialization adjusted to 6 decimal points.

Main parts of the final version of the simulator were also thoroughly checked by means of specifically built testing programs which allowed us to compare their output against an independent reimplementation of the submodel part on a different software platform or, when appropriate, by testing statistically the output of the submodel being inspected. 

Inputter and Outputter subunits and the motion, uptake, metabolism, reproduction, and actions over the medium submodels of the implemented simulator were formally verified. Input values transformation from experimental to internal simulator units were recorded and tested by comparison against an independent reimplementation of the necessary calculations using spreadsheet software. Transformation of the model outputs from internal to experimental units were recorded and tested by comparison against an independent reimplementation of the required calculations using spreadsheet software. Motion submodel was verified using two independent tests investigating the crossing of the medium boundaries by the moving cells and the probability of the movement to the neighbourhood. The first test of the motion submodel was conducted by simulating 20 random movements from all the existing cells of the three-dimensional space and checking the coordinates after the movement to be between 1 and iq, the number of cells per dimension. For a robust design of the submodel, iq values from 1 to 5 were essayed. The second test of the motion submodel was done by simulating 5400 random movements from a fixed initial spatial cell, recording coordinates after the movement, and obtaining occurrence of the movement to the 27 allowable cells with spreadsheet software . Equality of frequencies was statistically tested in R (R Core Team, 2012) by means of the chisq.test function of the stats package (p-value>0.98). Uptake and metabolism submodels were thoroughly tested by randomly setting their input variables according to their allowable values and subsequently reproducing subroutine output by an independent reimplementation of the necessary computations using spreadsheet software . The reproduction submodel was thoroughly tested by randomly setting input variables of the submodel, according to their allowable values, and subsequently reproducing subroutine output by an independent reimplementation within spreadsheet software. A sufficient number of repetitions (2000) allowed exploration of all subunit parts. Although a number of minor changes were made to the final reproduction submodel version, the high chance of any error within this submodel impairing C and N balances and a careful upgrading of the program unit allow us to assume there are no significant errors. Finally, actions over the medium (diffusive processes) submodel was tested by comparison with the output of the testing program against an independent reimplementation of the submodel in R (R Core Team, 2012). 
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