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1le) RBC Death. After cell lysis the fraction of volume corresponding to solid unsolvable
materials, wich represent approximately Vyemain = 6 pm? are left in the same spatial
cell. At the end of each time step, just after merozoite propagation, these remains
may fall to any of the nine nearest neighbour cells in the stratum inmediatly below,
just like the RBCs do.

2a) SC Diffusion. Substrate diffusion is initially explicitly modelled with a FCTS as in
Section 2.2.

~nn(i,j,k’)
CZT}& = Cit,j,k' + D Z wl~,m7qut,7n,q (34)

l,m,q

[, m and ¢ are the spatial coordinates of the 27 cells that constitute the inmediate
environment of cell (4,7,k). Equation 3.4 adds up the contributions of the each cell to the
diffusive transport of substrate. The set of weights wy ,,  are:

m ; 8 cubic diagonals : (I£i)N(m#j)N(q#k)
-1 ; same spatial cell. (I,m,q =1, j, k)

W ; 12 square diagonals, i.e. (I i) N (m # j) N (g =k)

; 6 square sides, i.e. [ #i)N(m=j7)N(qg=k)

(3.5)

Wi,m,q =

1
2(6+3\/§+4\/g)

Substrate diffusivity is initially set to its maximum values D = 0.8. This value is
inadequate, and the submodel does not correctly account for diffusion, so it has been
switched off in all the applications of INDISIM-RBC presented in this chapter. The
problem regarding the model of diffusion is analyzed using other approaches in Section
3.5.2.

3.3 Analysis of experimental observations with the 3D

model

3.3.1 Calibration of version v3D

The experimental results on the evolution of the parasitaemia for the short-term
preservation (Pavanand et al., 1974) and long-term cultivation (Trager and Jensen, 1976)
of P. falciparum in static én vitro cultures are used to calibrate the set of parameters
employed by the model in the current version v3D.

The values for %1y, t;np(t = 0), Pieatr, and P,y are maintained to the ones used in
version 2Dv.2 (see Sections 2.3.1 and 2.3.2). Two additional parameters are introduced
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to represent specific three dimensional phenomena. The settlement of the haematocrit
layer, which is modelled as the fall of individual RBCs and merozoites (Prq = 0.05). The
graphical outcome of the simulations that best fit the experimental results are presented

in Figure 3.6 and extended in Ferrer et al. 2007.
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Figure 3.6: Simulation results compared to experimental data of the overall infection course
in: a) Continuous-flow static cultivation of P. falciparum; and b) static cultivation through the
Candle-jar method (Jensen and Trager, 1978).

3.3.2 Settling processes in the haematocrit layer

RBCs are slightly denser than the culturing medium. For this reason, they sink to
form haematocrit layers. Once the haematocrit is formed, it can be assumed that the
settling process may continue wherever there is room available in inferior levels. The
subsidence of RBCs and of the material that remains after cell lysis (cell membrane and
organelles that are not dissolved in the medium) through the haematocrit layer may play
a role in the local limitations to the propagation of the infection. Several mechanisms

modelling this settling process have been trialled, namely:

1. No fall of RBCs, merozoites and remains. Voids are left after each RBC lysis and
the haematocrit layer gradually turns into a porous structure with homogeneously
distributed holes containing 1 spatial cell, and bigger cavities in the regions where
the infection has been spreading. These cavities caused by the successive lysis

of IRBCs are empty enclosed spaces that usually contain 16 spatial cells (this is
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the number of RBCs that get infected and burst during the span between two

consecutive subcultivations).

These cavities do not impede nor facilitate the spreading of individual parasites,
but they indirectly slow down the propagation of the infection because extracellular
merozoites may spend several time steps in non occupied spatial cells.

2. RBCs, merozoites and remains fall to a lower stratum with a fixed probability Pfq,
only if there is enough room in the spatial cell immediatly below them.

Infection growth ratios (GR) are higher when compactation methods (2 and 3) are in-
troduced. However, the simulated GRs do not significantly vary from one mechanism to
the other if the probability of falling is small enough (Pjey < 0.05). Simulations with the
first mechanism eventually show unrealistic configurations of the haematocrit layer (for
instance, a vertical profile where a stratum has nearly no RBCs while the stratums above
it are full).

The sedimentation rate of real RBCs in the free culturing medium depends on many
physical constraints (for instance the terminal velocity, achieved when the downward force
of gravity minus buoyancy equals the upward force of drag) and physiological factors (for
instance, the presence of substances promoting or inhibiting RBC adhesiveness, or the
membrane potential of RBCs). The order of magnitude of the RBC sedimentation rate
is around several millimeters per hour (this means that the RBC may fall down several
spatial cells per time step). However, the fall of RBCs through the haematocrit layer
presumably involves much slower precipitation velocities due to the interaction among
cells.

The averaged cell density of the simulated haematocrit (pf,,, ) depends on the settling

sim
mechanism and on the sedimentation rate. Simulation results that fit the experimental
cell density observed in the real haematocrit layers are obtained with mechanism 2 and
Pro;p = 0.05. Using these values, the simulated cell densities in the haematocrit layer

range from pf;,, = 0.7 to pf;,, = 0.9.

3.3.3 Multiple invasion of RBCs

The propagation of the infection is modelled as a local invasion process that occurs
when a merozoite contacts a healthy RBC with a probability described by P, ¢(trpc)
that varies with RBC age (trpc). Given that it is a stochastic process, the distribution
of RBCs invaded by more than one parasite can be assumed to be a Poisson distribution
with A = Py, s.
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Following the discussion in Section 3.1.2.1, one can posit the inverse question: this is
to determine the value A that best fits the observed corrected Poisson distribution. Once
this value has been set. the fraction of RBCs that are effectively susceptible to invasion
can be calculated.

The distributions of multiply parasitized IRBCs that best fit with the distributions
observed in real cultures (see Figure 3.7) is obtained when the model uses average invasion

probabilities that range from Pj,; = 0.8 to P,y = 1.
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Figure 3.7: Multiple infections expected by the model compared to experimental results observed in
in vitro trials. White small circles (0): experimental counts; big solid grey circles (e ): simulation
outcome with the typical Py = 0.8; big empty diamonds (O ): simulation outcome with Piny =1
for all RBCs.

Noteworthy, no significant differences are found when the values of the parameters
defining P, s are varied. Therefore, it can be deduced that the lack of availability of
healthy RBCs is more related with local limitations on the process of spreading of mero-
zoites, than with the values of Py, .

According to the Poisson distribution that best fit experimental data, the fraction of
non-infected RBCs should be fp(0; A = 0.85) = 40%. Instead, the observed fraction of
healthy RBCs is fops(0) = 1 — %I ~ 95%. Therefore, the estimated fraction of RBCs
that are not effectively available to the infection is around half the population of RBCs
(in fact, around ~ 55%).
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This prediction is consistent with the rules defining the local propagation of the par-
agite through the haematocrit with low parasitaemia and randomly distributed TRBCis:
first, as long as the parasitaemia is below 4%, the haematocrit layer is composed by unit
cells that consist on one IRBC and 26 healthy RBCs; second, only 16 (on average) of
these healthy RBCs can be eventually invaded by an egressed merozoite. This makes the
fraction of RBCs susceptible to invasion around ~ 60%.

In conclusion, the observed distribution of multiply infected parasite forms is consis-
tent with the individual models of healthy RBC invasion and merozoite spreading.

3.4 Local limitations on the infection process

The experiments performed by EMG-GSK (see Section 3.1) reveal two system-level
geometric characteristics of the haematocrit layer that affect the in wvitro development
of the parasite: depth (HLD) and separation between walls of the culturing device (L).
Culture characteristics and observed results for W, B and P trials are presented in Tables
3.2 and 3.4.

The observed measurements throughout each trial show a strong time correlation, as
a consequence of both the parasite infection cycle and the external manipulation of the
culture system. In fact, each single trial can be regarded as the evolution of a single cul-
ture, thus characterized by the average parasitaemia throughout the whole culture trial
(%I), or as a set of replicas of the evolution of the culture between two subsequent sub-
cultivations, thus characterized by the average growth ratio (GR4g). The later magnitude
ig used to compare the trialled geometries.

The data sets from the different trials are compared one with each other using non
parametric statistics, such as the Kruskal-Wallis (KW) test (see Appendix C ) because
GRys data sets from any single trial do not come from a normal distribution. Experimen-
tal observations are also compared both to the results obtained with a system-level model,
and to the outcome of INDISIM-RBC. Comparison between theoretical predictions and
experimental results are carried out using parametric statistics.

3.4.1 Effect of the walls of the culturing device

Firstly, the effect of base surface (S) of the haematocrit layer on in vitro development
of the parasite is assessed. Heuristic knowledge of the experimental group indicates that
the extension of the haematocrit turns out to be important when the separation between
the walls (L) of the culturing device is small enough. The data obtained from different
trials (see Table 3.2) show that the development of the parasite is significantly hindered
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by small separations between walls. However, the functional dependence of this hindrance
on L can not be unequivocally determined: the observed average growth ratio at 48 hours
from the P series can be fitted to the same degree of confidence both to a linear regression
and to an inversely linear regression (see Figure 3.8).

Best fits to the experimental observations are:

the linear fit GRAg(L) = 0.93 + 0.46 - L, with r> = 0.86, and

the inversely linear fit GRyg (L) = 4.67 — 22 with r? = 0.91.

The chi-square (x2) test applied to the experimental data series shows that either
dependence is supported by a statistical significance of only ~ 90% (there is a 10%
chance of obtaining equal or better fitting results assuming that experimental data do
not come from the distribution proposed by the model).
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-1 — — Linear fit
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Figure 3.8: Observed dependence of the average growth ratio at 48 h on the distance between
separators (L). Dots with error bars represent the observed data. Dashed line (-) denotes the
best linear fit. Dotted grey line (--- ) denotes the best inversely linear fit (L-model).

System-level model of the effect of the walls (L model )

The inversely linear dependence can be explained by means of a whole-system model
that considers an exclusion region in the vicinity of the walls of the culturing device where
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the infection cannot progress (see Figure 3.10a). Under this assumption, the expected
average growth ratio of a culture as a function of the separation between walls (GRys(L))

is described by:

2LEXC 2LEXC

GRuys(L) = A A1 -

) (3.6)

where A, is the growth ratio in the exclusion region (Lgxc), and A; is the bulk
growth ratio (A; > Ay). The parameters that best fit this curve to the experimental data
set are shown in Table 3.5. According to this fit, the exclusion region would be spread over
approximately Lpxc = 2.5 mm. Many microscopic mechanisms may be speculated as
being responsible for creating this exclusion region (e. g., limitations on the spread of the
metabolic waste products, hindered propagation of the parasite due to the existence of a
meniscus) but it is not possible to discriminate among them with the current information.
The observed exclusion region is consistent with the expected exclusion region induced by
the capillary length (L) of the culture medium, but not by capillarity of the haematocrit
layer (see Section 3.1.2.3).

3.4.2 Effect of the haematocrit layer depth

The KW test showed that data obtained from W and B series come from the same
distribution function with significance greater than 99.9%. For this reason, all the mea-
surements have been grouped in a single data sample. Average values are given for the
data corresponding to similar geometric conditions, for each of the subgroups: {W3-+B1},
{W4+B2+B3} and {W5+B4+B5}.
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Figure 3.9: Dependence of the parasitaemia on the haematoerit layer depth (HLD). Triangles
with error bars represent the observed data of W (V) and B (A) series. The solid line denotes
the best fit for the system-level model HLD.

Experimental data show asymptotic inversely linear behaviour for large values of HLD
(Figure 3.9). Optimum parasite development occurs in cultures with HLD between
0.18 mm and 0.34 mm.

System-level model of the effect of haematocrit layer depth (HLD model )

A simple system-level model that reproduces the observed behaviour consists in split-
ting the haematocrit layer into discrete regions that have different behaviours. The in-
versely linear decay for deep cultures is reproduced when the haematocrit layer is split
into two horizontal regions: HLD = hy + ho. The first region has a fixed depth hy = h
and shows a high fixed infection multiplication ratio B;, while the infection spreads at
a lower rate (By < Bj) in the remaining part of the haematocrit layer (ho = HLD — h,
see Figure 3.10b). Let By and By be the multiplication ratio per infection cycle in each
of the above mentioned subregions, and HLD the total depth of the haematocrit layer.
The average infection growth ratio at 48 h, GR4s(HLD) is then given by:
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By+ (By— Bs) - 5 if HLD > h
B, if HLD < h

GRus(HLD) = (3.7)
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Figure 3.10: Depiction of the whole system model of the haematocrit layer. a) Schema of the culture
system according to the model used to tackle P trials. HLD indicates haematocrit layer depth, L stands
for the separation between walls of the culturing device and Leg. represents the extent of the exclusion
region, where the spread of the infection is hindered. The shaded subregion (1) indicates the fraction
of the haematocrit layer where the rate of infection spreading is high. b) Schema of the culture system
according to the model used to tackle B and W trials. HLD indicates haematocrit layer depth, D stands
for the diameter of the haematocrit layer and h represents the extent of the exclusion region, where the
spread of the infection is hindered. The shaded subregion (1) indicates the fraction of the haematocrit
layer where the rate of infection spreading is high. ¢) Schema of the model to tackle all the geometric
effects simultaneously. The propagation of the infection is hindered both by the walls of the culturing
device and by diffusive limitations. The shaded subregion (1) indicates the fraction of the haematocrit
layer where the rate of infection spread is high.

The parameters that define the curve that best fits with the experimental data set
are shown in Table 3.5. The parameters have been estimated using a numerical approx-
imation, and their likelihood given the observations has been checked using both the
Kolmogorov-Smirnoff (KS) test and the chi-squared test (x?). The former statistic has
been taken as the reference for the statistical significance of likelihood, because it im-
plies fewer restrictions on both data sets and provides a smaller value for the degree of
confidence of the results.

3.4.3 Whole-system model that accounts for HLD and L together
(WS model)

The models presented in sections 3.4.1 and 3.4.2 can be merged into a system-level
representation of the whole culture (Figure 3.10c). The evolution of the culture as a
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function of the geometric variables L and HLD is shown in:

Ko+ (Ky — Ky) - g - (1 — 222XS) i f HLD > h

GRss(L; HLD) =
s(L; ) Ky 2LExC 4 ), (1 — 2LExc) if HLD < h

(3.8)

The values for Lgxc and h have been adopted from the best fit values found in
sections 3.4.1 and 3.4.2. The two other parameters (K; and K3) refer to the growth ratios
in the subregions with high and low parasite propagation, respectively, and are calculated
from the best fit to experimental data. The obtained values are presented in Table 3.5. A
graphical comparison between the theoretical predictions and the experimental behaviour
is shown in Figure 3.11. The KS test applied to expected and observed data sets gives a
confidence between 90% and 95% for the proposed model.

System-level model Characteristic parameters p-value
L-model Ay A, Lexc (mm)
4.1 0.6 2.45 0.03
HLD-model B, By h (mm)
5.8 0.4 0.48 < 0.001
WS-model K1 Kg }L, LEXC
5.4 0.4 set 0.0012

Table 3.5: Characteristic parameters of the continuous models defined at a system level of description
that best reproduces the experimental observations. L-model considers the effect of the distance between
the walls of the culturing device, and Lg x ¢ is the region near the walls of the culturing device where the
propagation of the parasite is hindered; HLD-model considers the effect of the depth of the hematocrit
layer, with h the horizontal subregion where the propagation of the parasite is not hindered; WS-model
merges both models and aims to reproduce the culture behaviour for any geometric layout, Lpxc and
h have maintained their values from the best fits obtained with the 1- and the HLD- models. The
values for the parameters K1 and Ko have been set through the optimization of the likelihood of the model
outcome to experimental data. Significance of the obtained results (p-value) has been assessed using the
Kolmogorov-Smirnoff (KS) test; p-values represent the probability of obtaining better results assuming
the null hypothesis.

This merging allows checking of the consistency of the models proposed above both
with each other and with the experimental observations. It enables the specification of
the most appropriate geometric conditions for the static in vitro cultures of P. falciparum
infected erythrocytes.
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Figure 3.11: Dependence of the parasite growth ratio (G Ras ) both on the haematocrit layer depth
(HLD) and width (L), represented together as the number of cultured RBCs. Solid dots (e) with
error bars represent observed data from P trials. Empty triangles with error bars represent the
averaged observed values from W (A) and B (V) trials. The solid line (-) represents the best fit
values provided by the WS model. o) Experimental data sets from W and B trials on the whole;
b) detailed view of trials with small culluring volumes.

3.4.4 Outcome of INDISIM-RBC

The experimental results have been compared with the corresponding outcome of the
simulations carried out with a version of INDISIM-RBC.02D that accounts for whole-
system model. The WS assumptions have been introduced as ad hoc constraints on the
rules governing the individuals (parasites and RBCs) at a cellular and local level. The
simulation space is split into two horizontal sub-regions (layers 1 and 2, respectively; see
Figure 3.4.3b) with different probabilities of infection (P;,, (1) and P;y,£(2), respectively).
The simulations also allow assessing the effect of the walls on real cultures. This is
implemented through placing a vertical wall on one of the side boundaries of the simulation
space, this is changing one of the periodic boundary conditions for a pair of closed and
open boundary walls facing each other.

INDISIM-RBC is used to tackle solely the geometric constraints on parasite prolifer-
ation at a cellular level, so just a few parameters from the general model are modified:
Py is set to Py r(1) and Py, 5(2) at each of the subregions. The probability of infection
for mature RBCs (P, = 0), the rate of local spreading of merozoites (Pfqy = 0.05)
and all the remaining parameters have been held to the values fixed by the simulation
results of the candle-jar method (see Section 3.3.1). The estimated values for P;,,¢(1) and
P;,#(2) are those that provide the simulation outcomes that best fit with the macroscopic
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observations on the average growth rate at 48 hours (GRy4s), and they are presented in
Table 3.6.

Characteristic parameters of the IBM Ping (1) Pinf (2) Dfatt Significance ‘

Best fit values 0.51 0.01 0.05 0.014

Table 3.6: Characteristic parameters of the Individual-based model that best reproduce the experimental
observations. The values for the parameters representing the infection probability in the upper (1) and
lower (2) regions of the hematocrit layer (Ding (1), Pinf(2)) as well as the sedimentation rate (Pruy;) have
been set through the optimization of the likelihood of the model outcome to experimental data. Significance
of the obtained results has been assessed using the Kolmogorov-Smirnoff (KS) test; the presented values

show the probability of obtaining better results with the null hypothesis.

A graphical comparison between the outcome of the IbM and the whole-system models
is shown in Figure 3.12. The estimation of the optimal values has been carried out through
systematic, yet not exhaustive exploration of the space of parameters; better fits could
be found by the recursive refinement of the optimization protocol. Such an improvement
of the values at a cellular level has not been carried out because parameters such as P,
stand for very specific characteristics of the parasite strain, blood sample and culturing
conditions. Thus the accurate estimation of the best-fit values does not provide general
insight concerning the culture system. The likelihood of the simulation results, given
the experimental observations, has been checked using both the Kolmogorov-Smirnoff
(KS) test and the chi-squared test (x?). Again, the former statistic has been taken as
the reference for the statistical significance of the likelihood. because it implies fewer
restrictions on both data sets and it provides a smaller value for the degree of confidence
of the results.
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Figure 3.12: Dependence of the growth ratio of the simulations on the haematocrit layer depth
(HLD). Symbols with errorbars represent the observed data, (e: P-series, /\:W-series and V: B-
series). Grey solid line denotes the best fit for the IINDISIM-RBC simulation outcomes. Dashed
lines represent the deviation in the outcome observed for 4 simulation runs of each of the observed
points.

3.4.5 Discussion

The systematic study of different macroscopic culturing conditions has allowed for the
building of a quite simple whole-system model which is compatible with the experimental
observations and which may account for some and yet poorly understood phenomena.

Some conclusions may be drawn from the experimental results, assuming the whole-

system model:

1. Cell-cell interactions such as erythrocyte aggregation and rosette formation around
parasitized cells can be accounted for as average intercellular binding energy that
determines the macroscopic shape of the haematocrit layer in the in wvitro culti-
vation of P. falciparum-infected erythrocytes. Under custom culturing conditions,
the haematocrit layer can be considered as a flat film, but such depiction is not
valid when the haematocrit volume decreases. At small volumes of haematocrit
the intracellular binding energy (which can be tackled as a surface tension on the
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haematocrit boundaries) is comparable to gravitational energy, so the haematocrit
must be regarded as a sessile drop at the macroscopic scale. Different shapes of the
haematocrit are observed depending on the material of the culturing device.

. According to the L-model, the spread of the infection is hampered by short distances

between walls (L), and cultures have are expected to be strongly hindered when
L < Lgxc ~ 2.5 mm. By extrapolating Equation 3.6, it is deduced that the effect
of the exclusion region can be overlooked in the WS-model when L > 2 ¢m with
more than 95% confidence.

The geometric conditions of the culture systems at a macroscopic level of description
play an important role in parasite development. According to the HLD-model, the
spread of the infection is hampered for thick haematocrit layers. In particular the
hindrance appears when the depth of the haematocrit layer exceeds a maximum
threshold value HLD > h ~ 0.478 mm.

. A bottom-up approach can be used to check the validity and consistency of the

system-level models. The simulation outcomes are consistent with observations
when the haematocrit layer is split into two subregions. Such an IbM also enables
specific study and treatment of the relevant processes occurring at the scale of the
parasite. As a result, some additional conclusions may be drawn from analysis of
the TbM:

(a) The maximum threshold for the growth ratio at the zone of high parasite
proliferation is geometrically fixed: the multiplication of the number parasite
is not enough to ensure an appropriate GRyg, but a minimum spreading of the
merozoites is also required. This is shown by the model because increasing the
maximum probability of individual infection (P;,r) above a certain threshold
value does not entail an increase in the infection growth ratio. In contrast,
greater diffusion rate for the extracellular parasite through the haematocrit
layer (Pfq), or the slight rift of RBCs (Prau) does affect the global growth

ratio.

(b) The macroscopic subregions of different parasite proliferations (layers 1 and 2
in Figure 3.10b) are externally imposed on INDISIM-RBC as ad hoc modifi-
cations on the rules governing the parasite proliferation at a local level. The
reduction of subregion 1 in Figure 3.10c can be recreated with the IbM as
a consequence of the perturbations caused by introducing a closed boundary
into the simulation. The quantitative reproduction of the observed behaviours
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has not been achieved because simulations representing the whole haematocrit
layer are unfeasible due to excessive computation demands.

(c) The observed reduction in the average GRug for very thin haematocrit layers
(unfeasibility of the harvest when HLD < 0.04 mm, and noticeable hindrance
on cultures with HLD < 0.1 mym ) is reproduced with INDISIM-RBC even
though it has not been introduced as an ad hoc external input on the rules
governing the model. This is an example of an emergent behaviour that arises
from the local interactions among individuals. It is caused by the effect of
the existence of a closed boundary of the system on the propagation of the
parasite.

According to the obtained results as a whole, most appropriate dimensions of tested
HLDs range from 0.18 mum up to 0.34 mm and most convenient distances must
exceed L > 2 cm.

To sum up. the systematic study of a wide range of geometric configurations for the
haematocrit layer allows for predictive capacity formalized in a system-level phenomeno-
logical model. The resulting whole system model is consistent with INDISIM-RBC as soon
as the haematocrit layer is split into two subregions with different infection proliferation
rates.

The bottom-up approach can not provide justification for the ad hoc phenomenologi-
cal laws. In particular; the mechanism responsible for the emergence of two phases in the
haematocrit layer is not included (but just assumed) in INDISIM-RBC. Heuristic argn-
ments support that limitations are due to the local scarcity of substrate in deep regions
of the haematocrit layer, as a consequence of a limited diffusion.

3.5 Local substrate limitations in the hematocrit layer

The differences observed between different geometries in the static in vitro cultures
of P. falciparum infected erythrocytes have been reproduced in Section 3.4.4 by defining
a model that splits the haematocrit layer (HL) into two subregions: one with plentiful
proliferation of the parasite and the other where the infection is hindered.

This section analyses how diffusion of substances through the haematocrit layer can
affect the viability of healthy and infected cells RBCs and lead to the formation of these
two regions. Grosso modo: RBCs need a continuous supply of substrate and a clean
surrounding in order to maintain their viability (IRBCs are even more demanding and
dump more metabolic waste). During the course of the cultivation, the activity of cells
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leads to the local exhaustion of the medium, which appears more markedly around the
TRBCs (see Section 2.3.5). The degradation of the environment can harm or even kill the
RBCs, thus hindering or even stopping the proliferation of the infection.

3.5.1 Diffusion limitations in the haematocrit layer

Diffusion limitation in static cultures arises from the joint effect of the individual
uptake and the limited diffusivity through the haematocrit layer. Diffusion in the haema-
tocrit layer can be correctly described with the reaction-diffusion equation (Eq. 3.9),
which relates the temporal variation of the concentration (C(7,t)) at a given point (')
characterized by the fraction of diffusing medium (¢, = 1 — pf, the fraction of volume
not occupied by the cells), with the mechanisms that cause it:

i) the diffusion term, which is proportional to the second derivate of the concentration
(AC = g: %) and to the effective diffusivity (D.), and

~ 2

k2
ii) the reaction term, which accounts for local consumption of substrate or average

uptake rate (U(C)).

a0(7 )
The values for the effective diffusivities in the haematocrit layer are taken from liter-

=D, - AC(T,t) — U(C(T, 1)) (3.9)

ature and presented in Table 3.7.

Free Culture Medium haematocrit Layer
Glucose | Do =9.3-10"%cm?/s Depy =024-Do=2.2-10"% em?/s
Lactate | Do = 1.5-107° ¢m?/s Dess = 0.19- Do = 2.9-107% em?/s

Table 3.7: Effective diffusivities of glucose and lactate through the Free Culture Medium (FCM),
and through the haematocrit layer (HL). Diffusivities in the FCM are set to their respective values
in water (Jou, 1985). The value of the effective diffusivities in the HL is averaged from measures
in biofilms (Stewart, 1998).

The haematocrit layer is modeled as a flat infinite film with an averaged homogeneous
distribution of IRBCs. Only the limitations on the RBC viability resulting from the
local scarcity of glucose are taken into account. In consequence, the diffusion problem is
reduced to a problem in 1D: assessing the variations of the concentration of glucose in
—

T = (V,V,2);t).
Two models of the averaged uptake have been considered i) a fixed uptake rate (zero-

the direction normal to the haematocrit surface (z), C(z,t) = C,,.(

order kinetics), and ii) a linear dependence of the uptake with the concentration of glucose
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until reaching a maximum value (first-order kinetics).

Diffusion limitation for a 1D model with zero-order kinetics

Zero-order kinetics states that the uptake in Equation 3.9 is a constant value: U(C(7, 1))
Uprr. The averaged uptake of a culture with %1 ~ 0.5% is U gz, = 4.7-10""mol-lp g5t
(Rapoport et al., 1976). The effective volume available for diffusion is the fraction of vol-
ume not occupied by RBCs (¢, = 1 — pf = 0.15 ). The relevant characteristics of the
culture system are HLD and the bulk concentration of substrate in the culturing medium
(Co = 2.67 mM/1). Equation 3.9 can be rewritten in the following adimensional form:

aC(¢,T)  9*C(¢,T)
or 02

QUHL
Co

— (3.10)

where 7 = (17;}[;% and ( = 57 are adimensional time and length, respectively;

5’(( ,T) = %OT) is the instantaneous substrate concentration profile, normalized to the
(1-pf)-HLD?

concentration at the free culturing medium; and P? = Ders
.

is a scaling factor.

The contour conditions for Equation 3.10 are:

i) C(1) = Cp, meaning that the concentration in the top of the HL is equal to
the bulk concentration. This is actually a superestimation of ils real value,
because a diffusion boundary layer (DBL) should be considered above the top
of the HL.

if) C’(0) = 0, meaning that there is no flux in the bottom of the HL because

there is a wall at the bottom of the culturing system.

A maximum threshold to the concentration profile is obtained by considering diffusion
alone. Tf the uptake is neglected (Ug, = 0), Equation 3.10 with the contour conditions
(i) and (ii) has an analytical solution, which is easily obtained with the Laplace transform
(c(¢,s) =L [5’ (¢, t)} ). The solution of this algebraic equation in the frequency domain
(s) is (Stewart, 1996):

(¢ s) oty mr O (3.11)
s cosh( . ‘ ) .

The corresponding solution in the temporal domain is given by an infinite series of

_ b
trigonometric terms, with every term multiplied by the factor e ¢ that tends to zero
when ¢ — oo (Crank, 1990). Such a solution corresponds to a substrate profile that
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graphically resembles a complementary error function with a variance that increases with
t (see Figure 3.13). In the limit ¢ — oo, the concentration profile is a homogeneous

distribution C(¢,00) = 1, V(.

t=0
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Figure 3.13: Temporal succession of the normalized vertical profiles of glucose concentration (C((,t))
through the levels of the haematocrit layer (C). Initially (t = 0), C((,0) = Co in the bulk culture

medium. (¢ > 1) and C(¢,0) = 0 in the haematocrit layer (( < 1). The bulk concentration is maintained

C(1,t) = Co, and glucose accumulates at ( = 0, % = 0 . Diffusion makes the substrate penetrate
the layer until reaching a uniform concentration C(C,00) = Co; ¥?: characteristic temporal scale of the

diffusion process; too = T¢2, when C(0,tg0) ~ 0.9AC .

The characteristic temporal scale of the diffusion process is defined by the scaling
factori)?. A typical measurement of this characteristic scale is tgg = 712, which stands
for the time when the concentration of a substances at the bottom of the cultured layer
reaches ~ 90% of its value at the bulk medium, as a consequence of diffusion alone,
C(0,t90) = 0.9 (Stewart, 2003). In the limit ¢ — oo, the concentration profile reaches
a steady state that does not vary with time. The substrate concentration profile of the

steady state (Cst(()) is reached when t > tgg, and is given by:

(1-¢% (3.12)
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The static cultures studied in this work (P-, W- and B-series) reach the steady state
before the subcultivations take place (see Table 3.8). This means that the steady solu-
tion Cs(¢) can be considered a good approximation to the concentration profiles in the
haematocrit layer.

The characteristic spatial scale of the zero-order reaction-diffusion model (Eq. 3.10)
in the steady state (t > tgg) is given by the depletion depth (Stewart, 2003):

do = |2 PetsC (3.13)
Unt

Once the steady state has been reached, dj represents the level (position in the z direction)
below which the concentration of substrate is zero. In the P-, W- and B-series: C = Cy =
2.67TA10 3mols/l, D, = 2.2A1075c¢m?/s. According to the zero-order approximation,
U =4.7-107"mol - Igpe, - $71 As a result: dg = 1.6 mm.

Other characteristic scales may be useful for the current analysis: drpc and drrpc.
They represent the levels of the HL that have enough can hold RBCs and IRBCs, respec-
tively. These levels are placed above the depletion depth and fulfill: dgpc > drrBc-

These characteristic levels define three different subregions in the haematocrit layer:

1) 2 > HLD — dirpc, where both RBCs and IRBCs have enough substrate to fulfill
their metabolic needs in the stationary state.

2) HLD — drpc > z > HLD — dirpc, where RBCs have enough substrate but IRBCs
don’t, in the steady state.

3) HLD — dgrpc > z, where there is not enough available nutrient to fulfill the RBCs
metabolic needs in the stationary state.

The growth ratio measured for a culture system is the average of the contributions of
subregions (1), (2) and (3). With regards to the overall observed performance of the
culture system, these three subregions define three expected behaviors.

i) GR (HLD) is maintained to a maximum value, for those cultures where both
healthy and infected RBCs are viable. GR(HLD) = GRya as long as
HLD < dgpc.

i) GR(HLD) decreases with HLD in those cultures that allow two different

subregions for the viability of the IRBCs, as long as the ratio of the volumes
of both regions (%) is varied. GR(HLD) = GR .z - dIIfiBDC while drpc >
HLD > dIRBC-
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iii) GR(HLD) is maintained to a minimum value when the thickness of the cul-
ture exceeds the region of RBC viability. GR(HLD) = GRpin = GRmas -
% as long as HLD > dgrpc

The values drpcand dirpc can not be estimated with the current approximation, be-
cause the model does not consider different uptake regimes for RBCs and IRBCs, but an

averaged overall uptake rate.
Diffusion limitations with first-order kinetics
First-order kinetics states that the uptake in Equation 3.9 is described with the fol-

lowing function:

Umax ; Zf C < C?naz

% . C(z’f) ; Tf C < Chag

U(C(z,1) = (3.14)

The values for the maximum uptake rate are Uy, (RBCs) = 4.7-10""mol - lppo, 87

and Upnar (IRBC's) = 4.7- 10 %mol - [ o, - 871 . respectively (see Equation 2.3).

Two measurements taken from literature are used to define the parameters in this
model: the kinetic constant for the glucose slow uptake phase K.y = 0.016 min~'and the
saturation concentration, at which RBCs uptake at their maximum rate C), 4, = 40 mM
(Leitch and Carruthers, 2007).

Equation 3.14 allows defining the threshold glucose concentrations below which the
uptake requisites of healthy RBCs and IRBCs are not fulfilled. These concentrations
(C,) determine the viability of healthy and infected cells. Their values are Cy (RBC) =
2.4 -107%mols/l and Cy (IRBC) = 2.4 - 10~3mols/l, respectively.

The values Cy (RBC) and Cy (IRBC) can be introduced in Equation 3.13, assuming
C = Cy — Cy, to obtain a coarse estimation of the threshold depths for cell viability:
drpc = 1.6 mm and drrgc = 0.5 mm.

The assumption of constant depletion depths (independent from the HLD of the
culture) constitutes the so called K-model. The decrease in the culture performance
(GR4s(HLD)) with HLD predicted by K-model is depicted in Figure 3.15 and compared
with the predictions of other diffusion models described below.

Optimal HL depth estimated with the Thiele modulus

Splitting the HL into three subregions with fixed thicknesses is indeed a coarse ap-
proximation. In real systems, the uptake rate (reaction term in Equation 3.9) explicitly



3.5 Local substrate limitations in the hematocrit layer 125

depends on the concentration profile (C(z,t)), which even in the steady state is affected
by HLD (see Equation 3.12). Consequently, the values dgrpcand dirpc must be affected
by HLD and can not be taken for constants. An alternative approach is required.

An adimensional number usually employed in the study of diffusion-reaction processes
is the Thiele modulus (¢), defined as the ratio between the reaction rate and the diffusion
rate. The Thiele modulus allows for the distinction between two regimes in the reaction-
diffusion models. If ¢ is small, diffusion is fast compared to reaction, but when is large
(¢ > 1), diffusion is slow (Stewart; 1996).

Agsuming zero-order kinetics in a flat thin layer, the Thiele modulus ¢y and the
normalized substgte concentration profile achieved once the reaction diffusion reaches
the steady state CY(¢) are defined as:

pf - Unr - HLD? — 0 Lif0<Cc<(1-2)
“\\" .o i Gu0= %’ (3.15
b0 m %(0) {(1%%02 -y <cen (3.15)

For the first-order kinetics, ¢; and the corresponding CA‘SIt(C ) are defined as:

J— . . 2 7 > .
¢1¢(1 pf) Koy HLDZ o) cosh(61-0) (3.16)

- Deyy ’ cosh(¢1)

The calculated values of ¢y and ¢, for the different HLD are listed in Table 3.8. The
vertical profiles obtained for different values of the Thiele modulus are depicted in Figure
3.14.
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Figure 3.14: Expected normalized glucose concentration profiles at the steady state &t(g) = c%
for different haematocrit layer depths (HLD). a) Predictions of the zero-order kinetics model
(see Equation 3.15); b) Predictions of the first-order kinetics model (see Equation 3.16)

The depletion depths drpc and dygpc can be calculated using these profiles and the
estimated threshold concentrations of cell viability (see Equations 7?7 and 77). They are
listed in Table 3.8. As expected, the values for dy. drpc and drrpc decrease with HLD:
more cells entail a more severe exhaustion of the medium.

The concentration gradients obtained assuming zero-order kinetics (0-model) are greater
than those obtained assuming first-order kinetics (1-model) because the former fixes a con-
stant consumption of nutrient within the viability region, while the uptake continually
decreases with nutrient concentration under first-order kinetics.

No measurements of the concentration profiles have been carried out for the ex-
perimental culture systems, so it is not possible to determine which model provides a
better approximation to reality. However, the goodness of these models can be indi-
rectly determined through comparing the expected decrease in the culture performance
(GR4s(HLD)) with HLD predicted by each model.

Expected infection growth rates

The threshold depths for RBC and IRBC viability (drpc and drrpc) obtained with
the K-model, 0-model and 1-model can be used to determine the values of the key pa-
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rameter h of the HLD-model (and the WS-model) (see Equations 3.7 and 3.8):

HLD s if HLD < dippc
h=qdirBc if dippe < HLD < dppe (3.17)
HLD - 422c - if dppo < HLD

The expected growth ratios GR4s(H LD) obtained when the value h is defined using
Equation 3.17 are depicted in Figure 3.15, together with the experimental values and the
best-fit model.

8 —
o=  Experiment
| WS-model
—  — K-model
6 — — — - 0-model
== T 1-model
o 4 -
V]
2 —
0 T I T I T |
0 1 2 3

HLD (mm)

Figure 3.15: Average infection growth ratio (GRas) as a function of the haematocrit layer depth
(HLD). Crosses (+): experimental results; black solid line: best-fit HLD-model (see Section
3.4); long-dashed line: results obtained with the K-model; short-dashed line: results obtained with
the 0-model, dotted line: results obtained with the 1-model.

The obtained results show that models considering just one dimensional diffusion
limitations qualitatively follow the trends observed in the experimental haematocrit layers,
but still fail to reproduce the behaviour of real systems. Apart from the decay for very thin
HLs (HLD < 0.1 mun) (which can be explained as an emergent behaviour of merozoite
propagation, see Section 3.4), there are two main differences between the predicted and
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observed GRys(HLD): firstly, the decrease with HLD is greater in the diffusion models
than in real systems. Secondly, for thick HLs (HLD > drpc), the slope of GRyg is flat,

while in the experimental systems and best-fit WS-model jgjz‘g < 0 in all the explored

domain.

The first difference can be explained as the result of considering a constant uptake
for a RBC population that is not affected by nutrient availability. The models here
presented can not take into account mortality due to the scarcity of substrate. In real
systems the average uptake will be drastically reduced below the depletion boundary.
As a consequence, the thickness of the layer with no substrate limitations (h) will be
increased.

The second difference, the asymptotic GR4s(HLD) is a consequence of the definition
of h for thick HLs (see Equation 3.17). It is observed in the K-model and 0-model
alone, while the 1-model does not show this behaviour because all the trialled HL fulfill
HLD < drpc- Nevertheless, there is a slight difference on how the K-model and the
0-model define the extension of the subregion with high infection propagation: in the
K-model dgrpcand dirpc are fixed values while in the 0-model both distances vary with
HLD (d = d(HLD)) and what remains almost fixed is the ratio %

Another key difference between the WS-model and the diffusion models presented
in the current section lies in the fact that the former defines two subregions in the HL
with different infection propagation rates, but parasite can still spread on both regions.
In contrast, the subregions defined by the diffusion models here presented consist on a
domain where infection spreads and another where it does not.
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Zero order kinetics First order kinetics
HLD t9o do drpc dirBC do drpc dIirBC
(mm) (h) %o (mm) e (mm)
0.06 18 s 0.04 NA NA NA 0.05 NA NA NA
0.09 45 s 0.06 NA NA NA 0.07 NA NA NA
0.2 4dmin 0.13 NA NA NA 0.16 NA NA NA
0.4 10 min 0.23 NA NA NA 0.29 NA NA NA
0.6 1h 0.41 NA NA 0.5 0.5 NA NA NA
1.0 1.5 0.67 NA NA 0.48 0.82 NA NA 0.48
1.1 1.9 0.75 NA NA 0.21 0.93 NA NA 0.21
1.5 3.6 1.04 NA NA 0.18 1.28 NA NA 0.19
2.0 6.4 1.38 1.2 1.3 0.13 1.7 NA NA 0.14
2.2 7.4 1.49 1.1 0.9 0.09 1.84 NA NA 0.14
2.9 13.2 1.99 0.7 0.6 0.06 2.46 NA NA 0.07

Table 3.8: Charecteristic parameters of the reaction-diffusion balance in the haematocrit layer
as a function of its depth (HLD). Characteristic diffusion times (too ~ T¢?). Thiele mod-
ulus (¢p) and characteristic lengths for zero order and first order kinetics: depletion depth
(do ) with substrate concentration C(do) = 0; threshold depth for RBC wviability (drpc) with
C(drpc) = 2.4A10%mols/l; and threshold depth for IRBC viability (dirpc) with C(drrpc) =
2.4A10 3 mols/l. NA stands for non applicable, meaning that the threshold concentration values
are not reached.

3.5.2 Explicit model of the diffusion process

The individual-based approach deals with the reaction-diffusion problem stated in
Equation 3.9 accounting for U(C(Z ,t) with the model of the individual cells and solving
diffusion through the haematocrit layer with the model of the local environment.

The simplest numerical method to model diffusion through a discrete spatial grid is the
explicit approach Forward-Time- Centred-Space (FTCS). Diffusion is solved iteratively
at each time step by converting the spatial derivates at each point of the grid (2) to
finite differences, and the temporal derivates to finite increments to be transferred at the
end of the time step (t — ¢t 4 1).

This method is used by INDISIM (see Equations 2.5 and 3.4 in 2 and 3 dimensions,
respectively), and has the general form

I =CL+D Y wC! (3.18)

i€nn(T)

where 7 is any of the spatial cells in the surroundings of ', nn(7), w; is the weight
of each contribution, and D is the numerical diffusion coefficient, which can be related
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to the real experimental coefficient (D.ys) with a correction factor (cf) that depends on
the discretization characteristic scales (spatial [s.and temporal ¢s) of the model:

~ ts
D=cf- Dess= 2 Deyy

The numerical analysis of the method (Eq. 3.18) in one dimension reveals that the
characteristic scales must fulfill D < % to maintain the numerical stability of the solution
(Hoffmann and Chiang, 2001). This means that ts < 25:“,
propagate and multiply through the spatial grid, completely altering the simulation out-
come. For models in 2D and 3D, this constraint is ¢ts < Lfiff - (1 = maz (w)) < %;f,
where max (w) is the maximum value of the diffusion weights as they appear in Equations

otherwise numerical errors

2.6 and 3.5 respectively.
When the size of the spatial cell is set to the scale of the RBC (Is. ~ 5 um), the time

2 —
step must fulfill ts < le, = 1%%;‘;;’;2 = 0.1 s. This time step is too small to simulate

the long-term evolution of cultures (i.e. 48 h ~ 107ts). Choosing this time step would

also entail that some of the cellular processes that are now considered with simple time-
averaged models (such as cellular metabolism and uptake) would require more elaborated
time-depending descriptions.

Alternatively, the time step can be set to the current value (ts = 6 minutes, which
is small enough to correctly account for merozoite propagation through the HL and big
enough to use simple average models for the RBC metabolism), and the size of the spa-
tial cell can be fixed to fulfill numerical stability. In this case l,. > #QT(U) “Desp =
0.02 cm. Adopting this scale would entail that each spatial cell contains ~ 10* RBCs.
Consequently, many of the current models (such as the release and spreading of mero-
zoites) wouldn’t be correctly implemented.

The FTCS approach forces a compromise regarding the characteristic scales of the
model, between representing the spreading of the parasite (and a coarse model of the
RBC) or the substrate diffusive limitations (and a detailed model of the RBC). The
solution employed in INDISIM-RBC so far (s ~ 10 um, ts ~ 6 minutes) opts for
the former, and banks on the spreading of the parasite as the limiting factor to the
propagation of the infection. The numerical diffusion coefficient corresponding to this
choice (D = B Degp ~ % -107%em? /s ~ 10?) leads to the numerical instability of
the diffusion model.

So, the values of D and the algorithm employed in the INDISIM-RBC simulations ei-
ther overestimate the restrictions to diffusion whenever D < 1, or do not consider diffusion
limitations at all when D = 1. The diffusion limitations observed in the simulations with
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arbitrary values of D (for instance, D =08 in Figure 2.15b, in Section 2.3.5) correspond
to excessively small values of the real Dy .

Yet, the analysis of the reaction diffusion problem obtained in section 3.5.1 states that
diffusion is indeed a limiting factor. FTCS simulations of diffusion alone carried out in
an empty spatial grid using appropriate scales (Isc ~ 1 wm and ts ~ 1 ms, D ~ 0.3)
show that there are differences in the concentration of glucose in the scales employed by
INDISIM-RBC (after 6 minutes, the relative difference in concentration observed at a
RBC distance is § = AC(LZE)( g:lg:;;”g; utes) . 10~3). This is the amount of nutrient
that is not transported during a time step, so it can be assumed that D=1-3.

This result is consistent with the application of values of D < 1 above mentioned. The
problem when trying to set the value for D in INDISIM-RBC is that the value calculated
using smaller fractions of the spatial cell and time steps is not a scale invariant, in other
words, that D varies with the resolution of the simulation. The discussion above indicates
that diffusion plays a limiting role at the characteristic scales of the modeled system butl
our explicit models can not account for it satisfactorily.

3.5.3 Implicit model of the diffusion process

An alternative to the explicit resolution of any numerical problem is to use an implicit
method. Implicit methods give the future configuration of the system by solving an
equation that involves both the present and future states of the system.

The implicit Crank-Nicholson (C-N) method (Hoffmann and Chiang, 2004) can be
employed to numerically solve diffusion within the haematocrit layer with a 1D model
and the discretization used by INDISIM-RBC.

The reaction-diffusion process described by Equation 3.10 can be expressed with a
finite difference approximation. Discretization of C (¢, 7) leads to a grid containing N
sites (6 < N < 290 to cover the range of observed H L Ds using the scales I5. ~ 10 ym and
ts ~ 6 minutes), each one characterized by its instantaneous concentration 5} . Equation
3.10 results in a linear system containing N coupled equations, one for each spatial cell
i, to be solved at each time step (7).

The explicit method described in the previous section (Equation 3.18) takes the form
of Equation 3.19. For each equation i, the FTCS scheme assumes one unknown variable
(517 *1) to be determined through a linear combination of known values at neighbour sites
C7, C7,, and C7_;.

(2 7

Crtt-cCr -5 ~Z—+1_2'é;+ézll
AT (AQ)?

-U; ; i=1:N (3.19)
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Alternatively, Equation 3.10 can be represented by the set of N linear equations that
constitute the implicit C-N approach. This results in the following system of equations,
one for each site i:

-~ -~ ~ 1 ~ 1 ~ 1
crtt-or ~Crtt—2.C7t O

-Uu7 ; i=1:N 3.20
At (AC)? oot (3:20)
In this case, each equation contains three unknown values (@T +, @Tfll and 5; :11

regarding the future concentration at the present and neighbour sites and only two known
values (C7 and U;) that include the information regarding the present state of siteé. The
C-N scheme can be expressed in the generalized form:

—~T7+1 —~T71+1 —~T71+1
CLL"Ci71 + bLCz + ci'Ci+1 = DZ—

where D7 is a linear combination of C7 and U;. This set of equations, together

with boundary conditions (i) éf\, =1, and (ii) 6(,()15 = 0, stated in Section 3.5.1, can be
expressed in the matrix form:
b2 C2 C;Jrl D;
as b3 Cc3 C;—+l Dg
= : = C™tA=D" (3.21)
an-3 bn—2 cn-1
an—2 bn—1 cytt D3

Matrix A in Equation 3.21 is determined and tridiagonal. It can be inverted to
determine C] +1 Vi. The results obtained with such an approach are consistent with
the analytical results presented in Section 3.5.1.

This implicit formulation of the reaction-diffusion problem can be worked out through
different numerical methods. The main advantage of such type of algorithms is that they
are numerically stable regardless the size of the spatial and temporal scales. These meth-
ods can also be implemented in INDISIM-RBC in order to solve the diffusion of sub-
stances. Their most important drawbacks are i) that the inversion and solution of matrix
A requires a lot of computational effort, and ii) that the differences in the individual
uptake (and the consequent heterogeneities in substrate concentration appearing in the
haematocrit layer) can lead to ill conditioned matrixes, not amenable to to computational
solving.

Implementing C-N in INDISIM-RBC would entail extending the presented formulation
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to two and three dimensions. The extension of this reaction-diffusion problem to 2D
and 3D entails dealing with band diagonal matrixes, analogous to the one appearing in
Equation 3.21, but with each line i containing nn number of terms per row (representing
the total number of spatial cells that constitute the nearest neighbourhood of cell 7).
Matrix A in 2D contains nn = 5 terms per row when only side neighbours are taken into
account, and nn = 9 when diagonal nearest neighbours are also included. Matrix A in
3D can contain up to nn = 27 terms when all the first neighbour cells are considered.
The number of operations to be carried out at each time step linearly increases with N
and the computational time also increases with the number nn.

The study of the optimal computational methods used to solve partial differential
equations under different constraints (such as the present reaction-diffusion problem in
the HL) constitutes a research field in computational physics on its own. Built-in li-
braries and numerical packages prepared to solve diffusion using optimized implicit meth-
ods are available from several academic sources but none could be properly assembled
to INDISIM-RBC. At the present moment, the implicit solution of the diffusive model
remains an unresolved problem to be tackled in further works.

3.6 Discussion and open questions

INDISIM-RBC.v8D improves the set of rules governing individuals (RBCs and IRBCs)
and the rules describing the environment (spatial structure, extracellular parasite and
substrate concentration) to better account for local interactions and transport phenomena
(Section 3.2). Three representational goals have been achieved with the 3D version of the
model (Section 3.3):

1. Population dynamics and structure: The temporal evolution of parasitaemia (%1),
infection growth ratio (GR) and distribution of post-invasion times among IRBCs
(¢ (t;nF)) observed in short-term and long-term culture systems are still quantita-
tively reproduced by the model.

2. Spatial structure of the hematocrit layer: the RBC packing factor within the hema-
tocrit layer (pf) in the model is consistent with the cell density measured for the

settled hematocrit in experimental systems.

3. Infection dynamics: the distribution of IRBCs with (k) multiple invasions pre-
dicted by the model (f(k; P;ny)) is in accordance with the experimental observations

(fobs(k))‘
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Yet, the foremost advantage of this version is that it allows tackling static in vitro culture
systems with different macroscopic geometries and comparing them one with each other
(Section 3.4). The study of different experimental setups shows that optimal harvests
are obtained with the following ranges: depth of the hematocrit layer 0.2 mm < HLD <
0.5 mm and distances between walls of the culturing vial L > 2 cm.

INDISIM-RBC.v3D alone does not provide a justification for these ranges. However,
when additional top-down phenomenological laws are assumed, the behaviour of real
systems is accurately reproduced. These whole-system laws basically consist in splitting
the hematocrit layer into different subregions with high/low infection proliferation rates.
They lead to the decrease in GR for high values of the hematocrit layer depth (when
HLD > 0.48 mm) and define a minimum threshold for the separation between walls. The
reduction in GR observed for smaller cultures (HLD ~ 0.1 mm) can be explained through
individual-based limitations resulting from the discrete nature of individual interactions.

A continuous model for diffusion of substrate and waste products has been developed
to provide an explanation of the phenomenological laws, although it has not yet been
assembled to the individual-based approach (Section 3.5).

Further work in the study of geometric limitations on the static cultivation of the
parasite should address the implementation of a model for diffusion that can give rise to
the limitations in real culture systems. Nevertheless, it must be kept in mind that the
restrictions observed in experiments may be caused by other factors, besides diffusion
limitations. For instance, they might be caused by unaccounted influences of the spatial
structure of the hematocrit layer, merozoite spreading or RBC invasion. Anyhow. the
analysis of static in vitro systems still offers questions to unravel.

Changing to another topic, INDISIM-RBC can also be modified to account for cultures
in suspension. In this case; the model of the invasion of healthy RBCs should be revisited.
The development of a model that can correctly describe both static and agitated culture
systems would be of great interest in order to design and build an operative and reliable
bioreactor-like culturing device.

Apart from the application-oriented contributions of this model, the process of building
INDISIM-RBC has provided interesting results in the ambit of individual-based modeling
of microbial communities. In Chapter 4, some of these general conclusions are exposed
and the results obtained with INDISIM-RBC are considered in a broader mark, together
with similar results obtained with other versions of INDISIM and with other approaches.



